Промежуточная аттестация по химии для 9 класса

1. Назначение проверочной работы

Проверочная работа проводится с целью установления соответствия качества подготовки обучающихся требованиям Федерального компонента государственных стандартов основного общего образования по химии.

2. Структура проверочной работы

Каждый вариант проверочной работы состоит из 11 заданий:

8 заданий — с выбором ответа (часть A);

2 задания – с кратким ответом (часть В).

1 задание – высокого уровня сложности с развернутым ответом (часть С)

Варианты соответствуют базовому уровню сложности.

В каждом задании части А предложены четыре варианта ответа, из которых

нужно выбрать только один.

Задания части В- ответ к заданиям этой части записывается в виде последовательных цифр таблицу. Каждому элементу первого столбца надо поставить в соответствие элемент второго столбца (причем в этом столбце могут быть и лишние элементы).

Задании части С – необходимо решить задачу

3. Время выполнения работы

На выполнение всей проверочной работы отводится 45 минут.

- 4. Дополнительные материалы и оборудование
- Периодическая система химических элементов Д.И. Менделеева;
- таблица растворимости кислот, оснований и солей в воде;
- электрохимический ряд напряжения металлов;
- непрограммируемый калькулятор.

5. Система оценивания отдельных заданий и работы в целом

- А) Каждое задание части А оценивается 1балл
- Б) Задание части В оценивается в 2 балла, при наличии 1 ошибки -1 балл.
- В) Задание части С -4 балла

Общая сумма баллов – 16

Критерии оценок

0 - 7	8 - 11	12-14	15-16
2	3	4	5

6. Распределение заданий проверочной работы по содержанию и проверяемым умениям

Проверочные материалы включают основные элементы содержания курса

химии основной школы.

Распределение заданий по основным содержательным блокам учебного курса представлено в таблице.

Задание	Проверяемый элемент содержания	Проверяемый
		элемент
		содержания
A1	Строение атомов первых 20 химических элементов Периодической	1,1
	системы Д. И. Менделеева	
A2	Закономерности изменения свойств элементов и их	1,2,2
	соединений в связи с положением в Периодической	
	системе химических элементов Д.И. Менделеева.	
A3	Строение молекул. Химическая связь: ковалентная (полярная и	1,3
	неполярная), ионная, металлическая	
A4	Валентность химических элементов. Степень	1,4
	окисления химических элементов	
A5	Реакции ионного обмена и условия их	2,5
	осуществления	
A6	Электролиты и неэлектролиты. Катионы и анионы. Электролитическая	2,4
	диссоциация кислот, щелочей и солей (средних)	
A7	Окислительно-восстановительные реакции.	2,6
	Окислитель и восстановитель	
A8	Вычисления массовой доли химического элемента в	4,5,1
	веществе	
B1	Основные классы неорганических веществ. Номенклатура	1,6
	неорганических соединений	
B2	Взаимосвязь различных классов неорганических	3,3
	веществ	
C1	Комплексная задача, включающая вычисление количества вещества,	4,4,3
	массы или объёма продуктов реакции по количеству вещества, массе	
	или объёму одного из реагентов, содержащего примеси и расчет	
	практического выхода продукта.	
	или продуктов реакции	

А1 В атоме химического элемента, расположенного в 3 периоде, VI группе, главной подгруппе, заряд ядра равен 1)+3, 2)+6, 3)+16, 4)-16.

А2.В каком ряду химические элементы расположены в порядке ослабления неметаллических свойств?

А3. Формулы веществ только с ковалентными полярными связями приведены в ряду:

А4..В каком соединении степень окисления фосфора равна +5?

А5.. Между какими веществами возможно взаимодействие?

1) BaCl₂ и NaNO₃ 2) (NH₄)₂SO₄ и Al(NO₃)₃ 3) FeCl₃ и KOH 4) NaCl и Ba(OH)₂

Аб. Катионы водорода и анионы кислотного остатка образуются при полной диссоциации:

1) хлорида натрия 2) серной кислоты 3) оксида серы 6. 4) гидроксида калия

А7. В уравнении реакции, протекающей по схеме

$$Zn + HCl \rightarrow ZnCl_2 + H_2$$
,

коэффициент перед формулой окислителя равен:

А8.. Массовая доля азота в нитрате бария равна:

В1. Установите соответствие между формулой вещества и классом неорганических соединений, к которому оно принадлежит. (Цифры в ответе могут повторяться)

Формулы веществ	Классы неорганических соединений	
A) Na ₃ PO ₄	1) основные оксиды	
Б) Н ₃ РО ₄	2) кислоты	
B) NaOH	3) соли	
Γ) Na ₂ O	4) щелочи	
	5) кислые соли	
	6) амфотерные гидроксиды	

Ответ:

A	Б	В	Γ

В2Установите соответствие между исходными веществами и продуктами реакции:

Исходные вещества	Продукты реакции
A) Fe + HCl(конц. → Б) Fe + HCl(разб.) → B)Fe +Cl ₂ →	$1.FeCl_2 + H_2$ $2.FeCl_3 + H_2$ $3.FeCl_3$ $4.FeCl_2$

Ответ:

A	Б	В

С1.200 граммов раствора нитрата серебра смешали с избытком раствора хлорида натрия. Выпал осадок массой 17.22г. Вычислите массовую долю соли в растворе нитрата серебра.

Вариант 2

А1 В атоме химического элемента, расположенного во 2 периоде, V группе, главной подгруппе, число электронов на последнем уровне равно 1) 3, 2) 5, 3) 7, 4)14.

А2. Неметаллические свойства азота слабее, чем неметаллические свойства:

1.кислорода 2.углерода 3.фосфора 4.калия

А3. Химическая связь в хлориде кальция

1 ионная 2. ковалентная полярная 3. ковалентная неполярная 4.металлическая

А4.Степень окисления +4 сера проявляет в соединении:

1.SO₃ 2.NaHSO₃ 3.K₂S 4.Fe₂(SO₄)₃

А5) .Между какими веществами возможно взаимодействие ?

1. Ca(NO₃)₂ и NH₄Cl 2.AgCl и HNO₃ 3.AlCl₃ и K₂SO₄ 4.BaCl₂ и ZnSO₄к

Аб. ЗНаибольшее количество анионов образуется при диссоциации 1 моль:

 $1.ZnCl_2$ $2.Fe(OH)_2$ $3.FeS_2$ $4.Fe(NO_3)_3$

А7.В реакции, схема которой

 $CuO + CO - CO_2 + Cu$, восстановителем является

 $1.C^{+2}$ $2.C^{+4}$ $3.Cu^{0}$ $4.Cu^{+2}$

А8.. Массовая доля кислорода в нитрате меди:

1.32,7% 2.44,9% 3.51,1% 4.66,3%

В1 Установите соответствие между двумя веществами и реактивом, с помощью которого можно различить эти вещества.

ВЕЩЕСТВА	РЕАКТИВ
A) AgNO3 и NaOH	1) AgNO3
Б) К2S и К3РО4	2) KCl
B) Na2SO4 и Fe2(SO4)3	3) MgO
	4) KOH

Ответ;

A	Б	В

В1. Установите соответствие между исходными веществами и продуктами реакции:

Исходные вещества	Продукты реакции
A)CuSO ₄ + NaOH \longrightarrow B) Cu(OH) ₂ + H ₂ SO ₄ \longrightarrow B)CuSO ₄ + BaCl ₂ \longrightarrow	1.H ₂ O + CuSO ₄ 2.CuCl ₂ + BaSO ₄ 3. Na ₂ SO ₄ + Cu(OH) ₂ 4.CuCl +BaSO ₄

Ответ:

Α	Б	В

8. При обжиге 300г. известняка получили 140 гоксида кальция. Вычислите массовую долю карбоната кальция, содержащегося в известняке.

Вариант 3

A1. Распределению электронов в атоме химического элемента соответствует ряд чисел: 2,8,3. В периодической системе этот элемент имеет номер

1) 3, 2) 13, 3) 27, 4)12.

А2. Наиболее сильными основными свойствами обладает оксид:

1.бериллия 2) магния 3).бария 4).цинка

АЗ. Какой вид химической связи в оксиде кремния

1.ионная 2. ковалентная неполярная 3.коалентная полярная 4.металлическая

А4. Такую же степень окисления, как у углерода в К2СО3, сера имеет в соединении:

1.Na₂SO₄ 2.(NH4)₂S 3.H₂SO₃ 4.FeS

А5. Какие вещества не взаимодействуют между собой

1) Al и Cl2 2) Ca и H2O 3) Na и H2 4) Cu и Na3PO4

Аб. 3 моль анионов образуется при полной диссоциации 1 моль:

1).нитрата натрия 2).хлорида алюминия 3) сульфата железа 2. 4)гидроксида меди 2

А7.В реакции, схема которой

$$MnO2 + HBr -----Br2 + MnBr2 + H2O$$

восстановителем является

А8. Массовая доля серы в сульфате натрия рана:

В1. Установите соответствие между веществами и классами соединений, которой они относятся

Вещества	Классы соединений
A. MqO и H2O	1 Нерастворимое в воде основание
Б. Аl(OH)3	2.Средняя соль
В) Na(OH) и Ba(OH)2	3.Щелочи
	4.Основной и кислотный оксид

Ответ:

A	Б	В

В2 Установите соответствие между веществами, вступающими в реакцию и продуктами их взаимодействия

Вещества	Продукты реакции
A) Na + H2O	1) Fe(OH)2+ NaC1
Б) Na2O + H2O	2) NaOH + H2
B) NaOH+ SO3	3) NaOH
Γ) NaOH + FeCl2	4) Fe(OH)3+ NaCl
	5) Na2SO3 + H2O
	6) Na2SO4 + H2O

Ответ:

A	Б	В	Γ

С1. Через 160 г раствора гидроксида натрия с массовой долей щелочи 10% пропустили углекислый газ до образования карбоната натрия. Вычислите объем (н.у.) вступившего в реакцию газа.

Вариант 4

A1. В атоме химического элемента, ядро которого содержит 12 протонов, число электронов на последнем (внешнем) уровне равно 1) 4, 2) 6, 3) 8, 4) 2.

А2. Неметаллические свойства более сильно выражены у:

1) фтора 2).азота 3) хлора 4). Серы

A3. Ионная связь характерна для 1) S_8 , 2) SO_3 , 3) K_2S , 4) H_2S

А4. Высшую степень окисления углерод имеет в соединении:

1) Na₄C 2) CH₄ 3) CaC₂ 4) K₂CO₃

А5.Оксид фосфора 5 реагирует с:

1) кислородом 2) оксидом кремния 3) хлороводородом 4) гидроксилом кальция

Аб. Наибольшее число анионов образуется при диссоциациии 1моль:

1) нитрата натрия 2) сульфата алюминия 3)хлорида цинка 4) фосфата натрия

А7.В реакции, схема которой

$$P + HNO3 + H2O -----H3PO4 + NO$$

восстановителем является

1)
$$P^0$$
 2) N^{+5} 3) H+1 4) N^{+2}

А8. Массовая доля кислорода в сульфате лития:

1) 24,4% 2)58,2% 3) 29,1% 4) 17,1%

В1. Установите соответствие между двумя веществами и реактивом, с помощью которого можно различить эти вещества

Вещества	Реактив
A) Na2CO3 и Na2SiO3	1) Ba(NO3)2
Б) NH4Cl и LiCl	2) HCl
B) Na2SO4 и NaOH	3) AgNO3
	4) NaOH

Ответы:

A	Б	В		

В2 Установите соответствие между веществами, вступающими в реакцию и продуктами их взаимодействия

РЕАГИРУЮЩИЕ ВЕЩЕСТВА	ПРОДУКТЫ РЕАКЦИИ
A) Ca(OH)2	1) CaO + H2

Б) Ca(OH)2 + H2S	2) CaO + H2O
B) Ca(OH)2 + H2SO4	3) CaSO3 + H2O
Γ) Ca(OH)2 + SO3	4) CaSO4 + H2O
	5) CaS+ 2H2O
	6) CaSO4 + 2H2O

Ответы:

A	Б	В	Γ	

С1.К раствору карбоната натрия массой 84,4 г и массовой долей соли 15% прилили избыток нитрата бария. Вычислите массу образовавшегося осадка

Ответы:

	A1	A2	A3	A4	A5	A6	A7	A8	B1	B2
B1	3	1	3	2	3	2	2	1	324	213
B2	2	1	1	2	4	4	1	3	214	312
В3	2	3	3	3	4	2	2	3	413	2361
B4	2	1	3	4	4	3	1	2	241	2544

Вариант1(С1)

1. Написать уравнение реакции

2. Находим количество молей AgCI (1б)

$$n(AgCI) = 17,22/Mr(AgCI) = 17,22/108+35,5=17,22/143,5\Gamma = 0,12$$
моль

$$3. n(AqCI) = n(AgNO3) = 0.12 моль$$

$$4.m(AgNO3) = n(AgNO3)*Mr(AgNO3)=0,12*(108+14+48)=20,4\Gamma(16)$$

5.Вычисляем массовую долю AgNO3 (16)

$$w(AqNO3) = m(пол)/200r*100\% = 20,4/200*100=10,2\%$$
. Всего-4б

Вариант 2 (С1)

1. Написать уравнение реакции

$$CaCO3 - CaO + CO2 (16)$$

2. Найти количество молей СаО (1б)

$$n(CaO) = 140/56 = 2.5$$
моль

$$3 \text{ n(CaO)} = \text{n(CaCO}_3) = 2.5 \text{ моль.}$$

$$m(CaCO_3) = n*Mr(CaCO_3) = 2,5$$
моль*100г/моль=250г (16)

Вариант 3 (С1)

1. Написать уравнение реакции

$$2NaOH + CO_2 - Na_2CO_3 + H_2O$$
 (16)

2. Найти массу NaOH

$$m(NaOH) = w)NaOH)/M(NaOH) = 10\%*160r/100\% = 16(r) (16)$$

3. Находим количество молей NaOH

$$n(NaOH) = m(NaOH) / M(NaOH) = 16 \Gamma / 40 \Gamma / Moль = 0,4 моль (16)$$

4. Находим количество моль газа

$$N(CO_2) = 1$$
мольм мас*0,4 моль/2моль = 0,2моль

5. Находим объем газа

$$V(CO2) = n(CO_2)*Vm = 0,2моль * 22,4л/моль = 4,48л (16)$$

Ответ;
$$V(CO_j) = 4,48\pi$$
 Всего за решение задачи - 46

Вариант 4(С1)

1. Написать уравнение реакции:

$$Na_2CO_3 + Ba(NO_3)_2 - BaCO_3 + NaNO_3(16)$$

2. Находим массу карбоната натрия:

$$m(Na_2CO_3) = w(Na_2CO_3)*m(pactbopa)/100\% = 15\%*84,4r/100\% = 12,66r(16)$$

3. Находим количество молей Na₂CO₃

$$n(Na_2CO_3) = m(Na_2CO_3)/M(Na_2CO_3) = 12,66\Gamma/106\Gamma/моль = 0,12моль(16)$$

4. Находим количество моль осадка:

$$n(BaCO_3) = n(Na_2CO_3) = 0,12$$
моль

5. Находим массу осадка

$$M(BaCO3) = n(BaCO_3) * M(BaCO_3) = 0.12 моль*197г/моль = 23.64г(16) Всего – 46$$

Ответ: $m(BaCO_3) = 23,64\Gamma$